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Abstract An application of the Colle–Salvetti wave
function (Colle and Salvetti in Theor Chim Acta 37: 329,
1975) to the uniform electron gas model is made. Some dif-
ferent levels of approximation are used. Contrarily to the
previous conclusions of other work (Tao et al. in Phys Rev A
63: 032513, 2001), the present result shows that the Colle–
Salvetti wave function is able to reproduce, to a semiquanti-
tative level, the properties of the uniform electron gas. The
most important request for this result is an apropiate choice
for the value of the only parameter entering in the Colle–
Salvetti wave function. The present results are a good com-
plement to those obtained by Moscardó et al. (Theor Chem
Accounts 115: 334, 2006) for atoms. On the basis of the re-
sults obtained in this paper, a very simple functional for the
correlation energy is put forward. Its application to the uni-
form electron gas, lead to a very reasonable set of results. It
can be concluded that the Colle–Salvetti wave function re-
mains being a good option to built, in an approximate way,
the correlation component of a N -electron system.

1 Introduction

The performance of the Colle and Salvetti (CS) wave func-
tion, or more exactly the CS two body density matrix (TBDM)
[1], has been repeatedly criticized in view of its application to
the ground state of the helium atom [2,3], and to the uniform
electron gas [4]. All the criticisms are in the same address,
namely, the CS wave function has no clear sense and the
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good results exhibited by the CS correlation energy formula
(Eq. 10 of [1]) and other related functionals [5,6], must be
explained on the basis of other reasons having no physical
significance.

In a recent paper [7] it has been shown that the above
assertion is wrong for the ground state of the helium atom.
Properties such as sum rule, correlation potential, and the cor-
relation energy integrand, were analyzed in [7]. The results
showed that the wrong behavior founded in [3,4] for the
same set of properties calculated in [7], was not due to the
CS wave function but to the particular application of the first
mean value theorem of the integral calculus [8] (MVT) in
obtaining some of the equations appearing in [1].

In this paper the CS wave function is applied to the uniform
electron gas, and the same properties as in [4] are analyzed.
Similarly to the results of [7] the present results show that the
CS wave function is also a reasonable good approximation
to describe the uniform electron gas. Finally, as an outcome
of the present analysis, a very simple density functional for
the correlation energy is put forward.

2 An outline on the CS approach

The CS wave function is a Jarstrow class one [9], and it is
written as

�(x1, . . . , xN ) = �0(x1, . . . , xN )

N∏

i �= j

[1 − ϕ(ri , r j )] (1)

where xi is the set of three space coordinates (r) and the
spin coordinate (ms) of the i th electron, and �0 is a known
reference wave function, usually a Hartree–Fock (HF) ones.
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For a two electron system the exact spin free TBDM
associated to Eq. (1) is

ρ2(R, r) = ρ0
2 (R, r)[1 + ϕ2(R, r) − 2ϕ(R, r)] (2)

here ρ0
2 is the reference TBDM corresponding to �0.

In [1] the function ϕ is taken as

ϕ(R, r) = exp(−β(R)2r2)
[
1 − φ(R)

(
1 + r

2

)]
(3)

with

β(R) = qρ(R)
1
3 (4)

where q is a parameter, and ρ(R) is the electron density at
point R.

In the above equations the set of coordinates

R = r1 + r2

2
(5)

and

r = (r1 − r2) (6)

is used.
If the system under consideration has more than two elec-

trons, then Eq. (2) does not follows directly from Eq. (1). But
in [1] it is supposed that this equation works also for more
than two electron systems, the reason is that by invoking the
MVT the Eq. (2) is also found for an N-electron system. How-
ever for the MVT apply in the integral of the product of two
functions one of them must not change sign in all the rank of
integration, and the other must be differentiable in the rank
of integration [8]. To obtain the TBDM for the N electron
wave function of Eq. (1) It must be solved the integral

�2(r1, r2; r1, r2) =
∫

|�(r1, r2, . . . , rn)|2 dr3 . . . drn. (7)

It is obvious that by merely invoking the MVT when integrat-
ing Eq. (7) for N ≥ 3, the above equation does not reduce
to Eq. (2) (an approximate expression of the TBDM is found
in [10]). Nevertheless for calculation purposes it seems rea-
sonable to look at Eq. (2) as an acceptable approximation to
the TBDM of an N electron atom or molecule. The uniform
electron gas model refers to a very high number of electrons,
and this fact may have non desirable consequences if Eq. (2)
is used for approximate the TBDM. This point will be dis-
cussed further in the next sections.

The Coulomb Hole condition

∫
ρ0

2 (R, r)[ϕ2(R, r) − 2ϕ(R, r)]dr = 0 (8)

together the condition ρ(R) = ρ0(R) imposes that for a
normalized TBDM
∫

ρ0
2 (R, r)[ϕ2(R, r) − 2ϕ(R, r)]dRdr = 0. (9)

Although Eq. (8) fixes the φ(R) function that appears in
Eq. (3), in the paper of CS [1] it is approximated by

φCS(R) = β(R)
√

π

1 + φ(R)
√

π
. (10)

But it is easy to show that, under certain restrictions, the
above equation can be also obtained from Eq. (8). In fact, by
supposing that the MVT applies to this integral, and taking
as zero the quadratic term that appears in it, Eq. (10) follows.

In [5] Eq. (8) was solved by approximating the spherically
average of ρ0

2 (R, r) as a Gaussian summation of the Taylor
development in powers of r

ρ0
2 (R, r) = ρ0

2 (R, 0) exp(−γ (R)r2). (11)

To ensure the normalization of ρ0
2 (R, r) the function γ (R)

must be

γ (R) = π

[
(N − 1)ρ0(r)

2ρ0
2 (R)

]− 2
3

. (12)

The integration of Eq. (8) with Eq. (11) lead to the φMSF(R)

function of [5], but if, as in [1], it is assumed that the quadratic
term into Eq. (8) is negligeble, the following approximation
is obtained

φags(R) =
√

πδ(R)

1 + √
πδ(R)

(13)

with

δ(R) = β2(R) + γ (R). (14)

Finally, a correlation energy can be written as

Ec =
∫

εc(R)dR (15)

with

εc(R) = 1

2

∫
ρ0

2 (R, r)[ϕ2(R, r) − 2ϕ(R, r)]dr
r

. (16)

The Eqs. (8), (9), and (16), and also the Coulomb hole

ρc(r1, r2) = ρ0
2 [ϕ2(r1, r2) − 2ϕ(r1, r2)]

ρ0(r1)
(17)
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were tested in [7] for the ground state of the helium atom. The
test was made by using φCS(R), φags(R), and φMSF(R) func-
tions. The results obtained in [7] showed that the CS wave
function seems to be a good approximation to the exact ones,
and that the bad results reported in [2,3] must be mainly due
to assuming the MVT when obtaining some key equations
appearing in [1].

The question about the loss of N -representability that can
appears when Eq. (2) is used for the TBDM of more than
two electron systems, was also addressed in [7], concluding,
on the basis of the calculations made on the helium, berili-
um and neon atoms, that the lack of N -representability has
scarce influence on the results.

3 The uniform electron gas

In the uniform electron gas model, the density is written as

ρ(rs) = 3

4πr3
s

= k3
F

3π2 (18)

where rs is the effective radius of a sphere containing exactly
one electron.

The CS correlation component of the spherically averaged
TBDM for the uniform electron gas, becomes:

ρc
2(rs, r) = ρ(rs)g

HF(rs, r)[ϕ2(rs, r) − 2ϕ(rs, r)] (19)

where the pair distribution function is given by

gHF(rs, r) = 1 −
[ 3(sin y−y cos y)

y3 ]2

2
(20)

with y = kFr .
For the uniform electron gas Eqs. (8), (16) can be read as

∞∫

0

ρ(rs)g
HF(rs, r)[ϕ2(rs, r) − 2ϕ(rs, r)]r2dr = 0 (21)

and

εc(rs) = 2π

∞∫

0

ρ(rs)g
HF(rs, r)[ϕ2(rs, r) − 2ϕ(rs, r)]rdr,

(22)

respectively.
In [4] the behavior of εc(rs), gHF(rs, 0)[ϕ2(rs, 0) −

2ϕ(rs, 0)], and the integrand of Eq. (22), all of them taken as
functions of rs, was discussed by comparing with the corre-
sponding exact functions taken from a paper of Perdew and

Wang [11]. In the calculations of [4] the function ϕ(rs, r) was
built by using the φCS(rs) from Eq. (10) of this paper, together
q = 2.29. Both sets of results discussed in [4], the exact and
the approximate one, exhibited important discrepancies.

A wave-vector analysis by plotting

Sc(rs, k) = 4π

∞∫

0

ρ(rs)g
HF(rs, r)[ϕ2(rs, r) − 2ϕ(rs, r)]

×r
sin kr

k
dr (23)

as a function of k
kF

was also reported in [4]. The CS Sc(rs, k)

for q = 2.29 shows a bad behavior in all the rank of values
of k, taking a wrong limit value for k = 0.

All the results discussed in [4] points to the existence of
deep differences between the pair distribution function of CS
theory and the exact ones, and on this basis it is concluded
that the CS wave function, and in particular, the Eqs. (2–4),
are not adequate to describe the uniform electron gas.

The results reported in [4] where all obtained by using the
φCS(rs) together q = 2.29 (the optimum value found in [1]
for the energy of the ground state of the helium atom). How-
ever, such as it was pointed in [7], the q value for a correlation
hole having one electron is 1.77, very near to the optimum
values found when using the φMSF(R), and the φags(R) (1.70
and 1.64, respectively).

An optimum value of q for the uniform electron gas, can
be obtained by imposing that, at a fixed value of rs, the exact
value for the correlation energy of Eq. (22), and Eq. (21) be
both fulfilled. For coherence with [4], a rs = 3 au, together
the correlation energy corresponding to this point (-0.057 au),
are been taken to obtain the q for the uniform electron gas.
The procedure followed has been: a numerical φueg(rs) is
obtained by solving Eq. (21) for rs = 3 au, and a fixed value
of q. Further, by using this set of three values, the Eq. (22) is
solved. The optimum value found for q following this proce-
dure was 1.38 , this value corresponds to about two electrons
into the correlation hole, but not to the unrealistic fraction
of 0.25 electron associated to q = 2.29. Further, by using
this q = 1.38 and imposing that the Eq. (21) be fulfilled, a
numerical function φueg(rs) is obtained for the uniform elec-
tron gas.

Figure 1 shows the εc(rs) of Eq. (22), obtained by using
the numerical φueg(rs). Results from φCS(rs), and φMSF(rs)

together q = 2.29, and q = 1.38 are also shown in Fig. 1. In
the uniform electron gas model, a very high number of elec-
trons is asumed, hence, the functions φCS(rs), and φags(rs),
are the same, this fact is reflected in Figs. 1–4 where the
results for the last function are absent. For comparison, the
exact curve taken from [4] (εPW

c (rs)) is also plotted. Such as
it is reported in [4] , the CS curve with q = 2.29 lies above
the exact ones, the same happens for the φMSF(rs) function,
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Fig. 1 Correlation energy as a function of the Wigner length

but the curve obtained by using the φueg(rs) is very near to
the exact ones.

The small differences found in Fig. 1 between the pres-
ent results obtained with φueg(rs) and the exact correlation
energy, are probably due to the use of a constant value for q
(q = 1.38). If this condition is relaxed and the exact εc curve
is imposed, it result in a set of values of q ranging from 1.34
to 1.4 with a mean value of 1.37, very near to that found in
this paper for rs = 3 au. Three families of curves are clearly
differentiated in Fig. 1, one is for CS, and MSF functions
with q = 2.29, other is the same but with q = 1.38, and a
third is for the PW, and ueg function together q = 1.38.

In Fig. 2 the 2πρ(rs)rgHF(kFr)[ϕ2(rs, r) − 2ϕ(rs, r)]
from Eq. (22) is plotted as a function of r for rs = 3 au.
The exact curve is taken from [4], the other curves shown in
Fig. 2 are for �CS(rs), �MSF(rs), both with q = 2.29, and
q = 1.38, and �ueg(rs)(q = 1.38). The CS curve (q = 2.29)

incorporates only a small fraction of the correlation energy
(it integrates to −0.0095au), and it is concentrated into short
regions of r . The uniform electron gas curve, obtained by
using the �ueg(rs), is similar to the exact one, having both of
them, extrema at approximately the same value of r . By tak-
ing q = 1.38, both, the CS, and the MSF curves becomes near
the exact one,underlying the importance of a good choice for
the parameter q.

The behavior of gHF(rs)[ϕ2(rs, 0) − 2ϕ(rs, 0)] furnishes
information about the cusp condition for the CS wave func-
tion. Figure 3 shows, together the exact curve taken from [4],
the values obtained, as a function of rs, by using the φCS(rs)

with q = 2.29, the �ueg(rs) with q = 1.38, and, also, the
curve for �MSF(rs) with q = 1.38. Both, the exact curve and
those obtained for q = 1.38 are superimposed. This result
reflects the fact that the CS factor of Eq. (3) includes the cusp
condition for r = 0.

The wave-vector decomposition analysis of Eq. (24) is
shown in Fig. 4. In a similar way as happens for the other

0.0 2.0 4.0 6.0 8.0 10.0
r
s

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

2π
rρ

H
F
g c(r

s=
3)

PW
UEG
CS (1.38)
MSF (1.38)
NEW
CS (2.29)

Fig. 2 Correlation energy integrand as a function of rs
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Fig. 3 On top correlation function versus Wigner length

properties previously discussed, the curve obtained by using
the φueg(rs) together q = 1.38, is very near to the exact
one [4], and it exhibits the true convergence limit for k =
0. This wave vector decomposition analysis has been made
also for the �CS(rs, q = 2.29), �CS(rs, q = 1.38), and
�MSF(rs, q = 1.38). The former of the three curves lies far
above the exact one, the other two are very close to it.

Table 1 shows εc(rs = 3 au.) as a function of the number
of electrons. The φags(rs) with q = 1.38 has been used for
this calculations, and, for each N , the correlation energy has
been optimized as a function of the parameter q. For small
values of N the optimal values of εc(rs) are far from the exact
correlation energy of the uniform electron gas, but, when N
becomes very high, this value is approached. This result is in
accordance with the continuous nature of the uniform elec-
tron gas, and shows that the N -representability loss of Eq. (2)
does not affect in a significant amount to the uniform electron
gas calculations.
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Fig. 4 Wave-vector decomposition analysis

Table 1 Correlation energy as a function of the number of electrons

N q φ εc(rs = 3 au)

2 3.36 0.5717 −0.0021

4 2.56 0.5010 −0.0040

6 2.28 0.4704 −0.0053

8 2.04 0.4407 −0.0066

10 1.86 0.4204 −0.0077

1,000 1.14 0.2963 −0.0557

10,000 1.16 0.2986 −0.0556

100,000 1.16 0.2984 −0.0561

1,000,000 1.16 0.2983 −0.0562

4 A very simple model

Five main conclusions are extracted from the above results:
The Colle and Salvetti wave function seems to be a good
choice for built the TBDM of a N electron system. The
Gaussian summation works well for obtain an approximate
φ(R). The lose of N -representability when the TBDM of
Eq. (2) is used instead the exact ones has not significant
effect on the results. The choice of an optimum value of q is
essential for reproduce the properties of the uniform electron
gas. The quadratic term appearing in Eq. (2) is of little influ-
ence wen compared with the ϕ(R, r). Bearing in mind the
above points, an approximate spherically averaged TBDM
for the correlation contribution can be written as:

ρc
2(R, r) = −ρ0(R, r)ϕc(R, r) exp −γ (R)r2 (24)

where γ (R) is the same as in Eq. (12)
By enforcing the cusp condition on the TBDM of Eq. (24),

the function ϕc(R) reads as:

ϕc(R, r) = [1 − φc(R)(1 + r)] exp −β2r2. (25)

Equation (8) is now written as:

∞∫

0

[1 − φc(R(1 + r)]r2 exp −[δ(R)r2]dr = 0 (26)

with δ(R) that of Eq. (14)
From Eq. (26) it follows:

�c(R) =
√

πδ(R)

2 + √
πδ(R)

. (27)

Finally the correlation energy is written as

Ec = −1.348383
∫

dR
ρ2

0 (R)

δ(R)[2 + √
πδ(R)]au. (28)

For the non polarized uniform electron gas the above equa-
tion reduces to the functional of the density:

Ec = −0.10456

q2

∫
dR

ρ(R)

0.54977q + rs
au (29)

very alike to the ancient expression obtained by Wigner for
the correlation energy of the uniform electron gas [12].

The performance of Eq. (29) for the uniform electron gas
has been analyzed by using now for the gc(rs, r) of [4] the
function

gc(rs, r) = −gHF(kFr)φc(rs, r). (30)

The results obtained with this new approximation are also
collected in Figs. 1–4 under the acronym NEW. All of them
show an acceptable performance of the very simple Eq. (29).
Theses results are obtained by using q = 1.38, hence, an
improvement can be expected by optimizing the value of the
parameter q.
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